Yes, I think I understand that bit of it - however - there is no value in the time frame depicted in the top of the xml file that match the data graphed. The graph is announcing a median value of 25.4 us avg. All my points from this xml file are:<br>
<br> <lastupdate> 1201287439 </lastupdate> <!-- 2008-01-25 12:57:19 CST --><br> <name> uptime </name><br> <value> NaN </value><br><br> <name> loss </name><br>
<value> 0.0000000000e+00 </value><br><br> <name> median </name><br> <value> 2.7847821400e-03 </value><br><br> <name> ping1 </name><br> <value> 2.7847821400e-03 </value><br>
<br> <name> ping2 </name><br> <value> 2.7847821400e-03 </value><br><br> <name> ping3 </name><br> <value> 2.7847821400e-03 </value><br><br> <name> ping4 </name><br>
<value> 2.7847821400e-03 </value><br><br> <name> ping5 </name><br> <value> 2.7847821400e-03 </value><br><br> <name> ping6 </name><br> <value> 2.7847821400e-03 </value><br>
<br> <name> ping7 </name><br> <value> 2.7847821400e-03 </value><br><br> <name> ping8 </name><br> <value> 2.7847821400e-03 </value><br><br> <name> ping9 </name><br>
<value> 2.7847821400e-03 </value><br><br> <name> ping10 </name><br> <value> 2.7847821400e-03 </value><br><br> <name> ping11 </name><br> <value> 2.7847821400e-03 </value><br>
<br> <name> ping12 </name><br> <value> 2.7847821400e-03 </value><br><br> <name> ping13 </name><br> <value> 2.7847821400e-03 </value><br><br> <name> ping14 </name><br>
<value> 2.7847821400e-03 </value><br><br> <name> ping15 </name><br> <value> 2.7847821400e-03 </value><br><br> <name> ping16 </name><br> <value> 2.7847821400e-03 </value><br>
<br> <name> ping17 </name><br> <value> 4.1771732100e-03 </value><br><br> <name> ping18 </name><br> <value> 4.1771732100e-03 </value><br><br> <name> ping19 </name><br>
<value> 4.1771732100e-03 </value><br><br> <name> ping20 </name><br> <value> 4.1771732100e-03 </value><br><br>So I would guess ping10 was chosen for median, and displayed as median above in the xml file. But I don't follow how 2.7847821400e-03 in the xml file is being displayed as 25.4 us avg on the graph. Is that value on the graph a modified median avg of all 20 points, or am I looking at the incorrect time frame? <br>
<br>I have always been a bit slow in these matters. that must be whats hitting me know. <br>
<br><div class="gmail_quote">On Jan 28, 2008 2:33 PM, Arnold Nipper <<a href="mailto:arnold@nipper.de">arnold@nipper.de</a>> wrote:<br><blockquote class="gmail_quote" style="border-left: 1px solid rgb(204, 204, 204); margin: 0pt 0pt 0pt 0.8ex; padding-left: 1ex;">
On 28.01.2008 16:03 David Anderson - Macomb wrote<br><div class="Ih2E3d"><br>> When I try this, it gives me a single plot graphed out. Then I expect<br>> that the remainder of the data in this xml file would/should match<br>
> with what is plotted. So I am taking the uptime, loss, median, and<br>> ping1 -> ping20. Converting the values from sci notation and I expect<br>> that they should match what is plotted. But I get a medial value like<br>
> = .0027847821400 and on the graphs it is declaring a median value of<br>> 25.4 us avg. Am I missing a step or some other simple math step?<br>><br><br></div>The definition of "median" is:<br><br>In probability theory and statistics, a median is described as the<br>
number separating the higher half of a sample, a population, or a<br>probability distribution, from the lower half. The median of a finite<br>list of numbers can be found by arranging all the observations from<br>lowest value to highest value and picking the middle one. If there is an<br>
even number of observations, the median is not unique, so one often<br>takes the mean of the two middle values.<br><br>See <a href="http://en.wikipedia.org/wiki/Median" target="_blank">http://en.wikipedia.org/wiki/Median</a> for details and examples.<br>
<br><br><br><br>HTH, Arnold<br><font color="#888888">--<br>Arnold Nipper / nIPper consulting, Sandhausen, Germany<br>email: <a href="mailto:arnold@nipper.de">arnold@nipper.de</a> phone: +49 6224 9259 299<br>mobile: +49 172 2650958 fax: +49 6224 9259 333<br>
<br></font></blockquote></div><br><br clear="all"><br>-- <br>... course don't ever tell anybody that they're not free cause then they gonna get real busy killen and maimin to prove to you that they are - George Hanson